
AI-Based Music to Dance Synthesis and Rendering JIN Bohan

2024 S.T. Yau High School Science

Award

Research Report

The Team

Name of team member: JIN Bohan

School: Bancroft School

City, Country: Worcester, USA

Name of supervising teacher: Yuxuan Zhou

Job Title: Phd Candidate

School/Institution: University of Mannheim

City, Country: Mannheim, Germany

Title of Research Report

AI-Based Music to Dance Synthesis and Rendering

Date

08/21/2024

AI-Based Music to Dance Synthesis and Rendering JIN Bohan

 1

AI-Based Music to Dance Synthesis and

Rendering

JIN Bohan

Bancroft School

Abstract. AI Choreographer is a deep learning model that is able to generate dance motions

according to music easily. However, several difficulties and weaknesses in the model still make

it difficult to use. For example, the model generates realistic motions, but sometimes the motions

are repetitive or do not respond to the audio correctly. Also, the model does not have a usable

render that allows it to directly animate the provided models with generated data. We improved

our base model to generate more realistic and better dance motions, and we also created a usable

automated render pipeline to directly render the generated motions into an animation of the

human models provided by the user. We improved the generation quality by introducing more

audio features into the model so that the models can utilize more features for better results. Also,

we overcame different difficulties in the rendering process, including applying the AI-generated

numpy motion data to provided SMPL models and converting the animated SMPL models into

usable FBX models. In general, the improved model generates motions that are more diverse and

realistic than the base model, which provides dance motions that have higher quality.

Keywords: Dance Generation, Motion Rendering, Deep Learning, Artificial Intelligence for Art,

Artificial Intelligence Generated Content (AIGC)

AI-Based Music to Dance Synthesis and Rendering JIN Bohan

 2

AI-Based Music to Dance Synthesis and Rendering JIN Bohan

 3

Contents

1. Introduction ..4

2. Related Works ..4

2.1 3D Human Motion Generation ...4

2.2 The Transformer Models ...5

2.3 Audio Features Extraction ..5

3. Backgrounds...6

3.1 The Transformer Model ...6

3.2 Skinned Multi-Person Linear Model (SMPL) ..8

3.3 Music Features .. 10

4. Methods ... 10

4.1 Music Features Extraction .. 10

4.2 Dance Poses Generation... 13

4.3 3D Animation Rendering ... 14

5. Results ... 16

6. Conclusion ... 18

Acknowledgments .. 19

References ... 20

Appendixes .. 22

Appendix A: Source Code of Converter ... 22

Appendix B: Source code for SMPL Object .. 23

AI-Based Music to Dance Synthesis and Rendering JIN Bohan

 4

1. Introduction

Dance has already become a prevalent culture worldwide, as many people use it to express and

share their ideas. However, dance is still a skill for people, and we must put much time and effort

into practicing it to perform well. Fortunately, dance can also be treated as a language, and

people can try to use AI models to help with dance motion generation, just like how AI models

treat natural languages. That’s why some dance generation models, like AI Choreographer,

appeared. Those models could use a piece of music as an input and automatically generate the

dance motions according to the music.

Unfortunately, AI Choreographer still has weaknesses that make it difficult for people to use.

The AI Choreographer did not provide an official render to use the generated data to generate an

animated model that could directly be used in many industries. For improvement, we added a

usable render that can directly render the generated motion onto a user provided model, and

output a ready-to-use FBX model. This generated FBX model can directly be used by most of

the popular 3D rendering software and game engines.

Moreover, the AI Choreographer uses audio features, which are the identity that could describe

audio, as tokens to compose the audio transformers. However, the amount of audio features used

in this model is not sufficient to capture the rich audio information in the music clip. After our

investigation, we classified all audio features into two main categories: Spectral Features and

Rhythm features. With the two main categories of features captured, the model generates dance

motions that better match the beats and rhythms of the input music.

2. Related Works

2.1 3D Human Motion Generation

Although human motion generation is still challenging in robotics, computer vision, and

graphics, this topic is already well-studied, and there are some well-developed solutions to help

deal with human motion generation. With the development of deep learning, people can use deep

neural networks to build and train models to generate diverse motions, such as the CNN neural

network [1,2] or the Transformer model [3]. AI Choreographer [4] is a music-conditioned 3D

dance generation model with the help of a new dancing motion dataset: AIST++ [5]. This model

AI-Based Music to Dance Synthesis and Rendering JIN Bohan

 5

allows the generation of dance motions according to different music using Transformer models

to study, analyze, and generate different dance motions by extracting and utilizing the features

from music and building relationships between different audio features and poses. EDGE

(Editable Dance Generation) is another dance generation model built with a transformer-based

diffusion model with a powerful music features extractor. This model also allows for generating

“realistic and physically plausible dances.” [12].

2.2 The Transformer Models

Dance motion generation is similar to natural language processing [6]; different motions are

connected in a particular sequence. The Transformer Model is an excellent way to train and

generate dance motions, like natural language analysis and generation. The Transformer Model

is a deep learning [7] model that uses attention to calculate the relationship between tokens from

the given model. When generating, the Transformer Model will always use its arguments trained

from datasets to make predictions on what mostly will the next token be. This process allows

computers to do natural language analysis and processing or, more extended, work on image

[13], audio [14], or dance motion generation [4, 12]. The Transformer Model here will receive an

audio clip and generate dance motions according to the audio clip given. The model will output

matrixes to indicate joint positions and rotation in a 3D space, which could used in either video

rendering or robot motions.

2.3 Audio Features Extraction

Music will hugely affect the dance's motion. Hence, it is also very important to use the features

of music to help with the model training process. By identifying features such as envelope [8],

MFCC [9], and Chroma [10], we can tell the models what type of music they are and what their

rhythms are, which will help classify and produce more precise arguments while going through

the attention mechanism in the model. Librosa [11] is a Python library that helps with audio

feature extraction, which allows us to utilize different audio features to improve model

generation quality.

AI-Based Music to Dance Synthesis and Rendering JIN Bohan

 6

3. Backgrounds

3.1 The Transformer Model

The main building block for this model is the so-called Scaled-dot-Product Attention [3]. The

Scaled-dot Product Attention function can calculate vectors Q (Query), K (Key), and V (Value)

simultaneously and calculate the weights of the values, which represent the relationships of the

values. The dot product of vector Q with all keys is performed, and the dot product is divided by

the square root of the vector’s dimension 𝑑𝑘, and the SoftMax of the product is calculated.

Finally, the SoftMax value will perform another multiplication with vector V and calculate the

values' weights. Here is the general formula for the Scaled Dot-Product Attention function:

Attention(𝑄,𝐾,𝑉)=softmax (
𝑄𝐾𝑇

√𝑑𝑘

)𝑉 (1)

Figure 1 also explains this formula visually:

Figure 1: The visual model of Scaled Dot-Product Attention [3].

Multiple Scaled Dot-Product Attentions get together and formed Multi-Head Attentions, which is

the most important building block of a transformer model, which we will explain later. The

Multi-head Attention gets Query, Key, and Value vectors and perform a linear transformation for

each of those. The multi-head attention will apply the Q, K and V vectors into each layer of

AI-Based Music to Dance Synthesis and Rendering JIN Bohan

 7

scaled dot-product attention, and finally concatenate all results and perform another linear

transformation, which is represented in the graph below:

Figure 2: The Visual Model of Multi-Head Attention [3]

For the transformer model, just like other neural transduction models, has an encoder and

decoder. During the encoding process, the model will map the series of input into a continuous

representation, and the decoder will use the generated continuous representations to generate the

output sequence. For each sublayer of the encoder, it contains a multi-head attention and a

simple and fully connected feed-forward network. The structure of the sublayer of the decoder is

similar but the decoder contains an extra masked multi-head attention. A transformer model

contains the same number of encoder layers and decoder layers, and usually the number of layers

is 6. Figure 3 below shows the visualization of the transformer models:

AI-Based Music to Dance Synthesis and Rendering JIN Bohan

 8

Figure 3: The Visual Model of the Transformer Model [3]

3.2 Skinned Multi-Person Linear Model (SMPL)

SMPL [15] is the main model used in this project to visualize generated motions, which are

represented by the rotation angles of all joints. Here are two formulas that are essential in the

process of calculation. The first formula is used to calculate the transformation matrix of joints

according to a vector of turning angles related to a particular part of the model, which uses the

Rodrigues formula to convert the vectors into rotation matrixes as follows:

exp(𝜔⃗⃗ 𝑗) = 𝐼 + 𝜔̂̅𝑗 sin(∥ 𝜔⃗⃗ 𝑗 ∥) + 𝜔̂̅𝑗
2
cos(∥ 𝜔⃗⃗ 𝑗 ∥) (2)

Where 𝜔⃗⃗ 𝑗 represents the relative rotation angle of a joint related to its parents in the kinematic

tree and 𝐼 represents the 3x3 identity matrix.

AI-Based Music to Dance Synthesis and Rendering JIN Bohan

 9

In order to calculate the world positions of the joints during the transformation, we also need to

calculate the transformation of each joint relative to their T-pose positions with the formula as

follows:

𝐺𝑘
′ (θ⃗ , 𝐽) = 𝐺𝑘(θ⃗ , 𝐽)𝐺𝑘(θ∗⃗⃗ ⃗, 𝐽)

−1
(3)

Where the T-pose of the model is represented by 𝜃∗⃗⃗⃗⃗ in the formula and 𝜃 represents the rotations

of joints in that frame 𝑘, and 𝑱 represents the matrix contains the transformation information of

each joint of the model. With the help of formula 2 and formula 3, the absolute positions and

rotations of each joint in the model can be easily calculated. Please refer to the paper of SMPL

model for the absolute positions’ calculation formula [15].

Also, different individuals have different body shapes. For example, some people are taller than

others or some people have larger stomachs than others. SMPL models have the compatibility to

express different body shapes with the following formula:

𝐵𝑆(c; 𝑆) = ∑ β𝑛𝑆𝑛

|β⃗⃗ |

𝑛=1

(4)

Where the 𝛽 represents the linear shape coefficient, and 𝑆𝑛 represents the orthonormal principal

components of shape displacements, which are the simplified and standardized data from the

original shape displacements [15]. With this formula, SMPL model is compatible with

expressing a variety types of body shapes.

Because of the different body shapes, the joint locations are also different from each other, and it

is very important to automatically adjust the joint locations in different body shapes. Otherwise,

there would be rendering issue while SMPL is trying to do the skinning for the skeleton. Hence

the formula below will automatically calculate different joint locations:

𝐽(β⃗ ;𝒥, 𝑇,𝑆) = 𝒥 (𝑇 + 𝐵𝑆(β⃗ ; 𝑆)) (5)

Where 𝑻 represents the template location matrix and 𝒥 represents the matrix that transforms rest

vertices into rest joints [15]. The matrix 𝒥 contains example poses from many different people

with variety types of poses so that it will make sure that the SMPL model is compatible with all

AI-Based Music to Dance Synthesis and Rendering JIN Bohan

types of body shapes with different joint locations and with different poses. The formulas above

10

are some of the most essential formulas that make sure the model will render and work properly.

3.3 Music Features

Music features are also very important information while generating dance poses, especially in

this project; we used more music features to optimize the training and generation results. Music

features are the characteristics of music, which use data to represent those characteristics and

help with the music classification while training and generating the dance poses. According to

the APIs Librosa [11] provides, we classified all the extractable music features into two major

types: Spectral Features and Rhythm features. Spectral Features, for example, the chroma and

MFCC of a piece of music, are the features that can be represented with a graph. Rhythm

features, like the tempo of music, are the features that are more related to the rhythm and beats of

the music. Using those features while training, the music can be classified into a more detailed

genre so that the model can generate more appropriate dances with the detailed classifications.

4. Methods

4.1 Music Features Extraction

We used the publicly available audio processing toolbox Librosa [11] to extract music features

and optimize training results. We extract the envelope of a music clip to see the changes in

amplitude and frequency over time. We also extract the MFCCs (Mel Frequency Cepstral

Coefficients) [9] and chroma [10] of the music clip to extract the music's characteristics and

melodic features, which the graphs of MFCC and the chroma extracted by Librosa are shown and

explained as below:

Figure 4: The MFCC feature of An Audio Represented in Graph [16, 22]

AI-Based Music to Dance Synthesis and Rendering JIN Bohan

The MFCC can be calculated with the following

11

process [18]:

1. Pre-Processing: First amplifying higher frequencies, then divide the signal into small,

overlapping frames, and finally apply a Hamming Window to soften edges of each frame.

2. Fast Fourier Transformer (FFT): Convert the time domain signal to the frequency

domain.

3. Mel-filterbank: Separate into different frequency bands and emphasize important

frequencies.

4. Logarithm: Take the logarithm of output from the Mel-filterbank, which compresses the

dynamic range of audio and more closely matches human sound intensity.

5. Discrete Cosine Transform (DCT): Highlights the most significant features of the sound

in each frame, which effectively captures the characteristics of a sound.

Figure 5: The Chroma Feature of an Audio Represented by Graph [17], where the X-axis

represents the time and the Y-axis represents the different chroma of audio.

The basic formula that calculates the chroma of audio is represented as below:

𝑐ℎ𝑟𝑜𝑚𝑎[𝑘, 𝑡] = ∑ 𝑆[𝑚, 𝑡]
𝑚∈𝐹(𝑘)

(6)

Where 𝑘 represents the pitch class at time frame 𝑘, 𝑆[𝑚, 𝑡] represents the value of power

spectrogram value at frequency bin 𝑚 and time frame 𝑡, and 𝐹(𝑘) represents the frequency bins

of the particular audio.

One-hot peaks and one-bot beats are also used to extract the pattern of rhythms. The tempo of the

music is also extracted, which is also a rhythmic feature to see the speed of the music. The zero-

AI-Based Music to Dance Synthesis and Rendering JIN Bohan

crossing rate is also used in optimization and can recognize any part with no volume. The

Spectral Centroid and Spectral Bandwidth features are also used in optimization, which indicates

the frequency of energy a clip of music concentrates and shows how wide the energy spreads.

All of these features above, which represent the melodic, rhythmic features, and characteristics

of a music clip, help optimize the training result by having more features for the models to

12

classify different types of music.

AI-Based Music to Dance Synthesis and Rendering JIN Bohan

 13

4.2 Dance Poses Generation

Figure 6: The main processes of Dance Poses Generation. Rotation angles and extracted audio

features are input into the model to generate new dance motions, and the generated dance motion

in the form of NPY file will be fed into the automated rendering pipeline for model rendering.

The automated rendering pipeline will apply the generated motion onto an FBX model and

render inside Blender.

AI-Based Music to Dance Synthesis and Rendering JIN Bohan

The figure above shows the dance pose generation processes, including the rendering part, which

has not been officially released by the developer of the AI Choreographer. First, the audio

extractor will extract the essential audio features from the audio file provided and send the

extracted features to the AI Choreographer. The model includes two transformers: the audio

transformer, which will help with processing the audio features given from the extractor, and the

motion transformer, which will process the dance motions according to the rotation angles from

the previous frames. With the combination of the two, the model will come up with a cross-

model transformer to generate the dance motion in the future frames, which will finally output as

14

a numpy file.

4.3 3D Animation Rendering

The rendering part will start with the numpy file generated by the AI Choreographer by applying

the turning angles into the prepared FBX model converted from the SMPL model, and the

converter will output an animated FBX model. The animated FBX model can directly imported

into any popular 3D modeling or rendering software, which we are using Blender here, to see the

result.

One of the improvements we made here is providing a usable dance pose renderer using the

numpy array results generated by the model. Based on the source code of Blender Plugin –

SMPL-to-FBX 1– we created a new plugin that takes the numpy file generated by the model and

any SMPL model. The plugin will automatically apply the numpy file to the SMPL file as

animation and convert the animated SMPL file into FBX. The animation application will follow

the joint map below for conversion:

1 https://github.com/softcat477/SMPL-to-FBX

https://github.com/softcat477/SMPL-to-FBX

AI-Based Music to Dance Synthesis and Rendering JIN Bohan

Figure 7: Joints used by the converter to

15

incorporate the generated motions into FBX

models. The corresponding joint and the numbering are listed on the left, and the positions of

each joint are presented on the right.

The whole converting process can be visualized as below:

Figure 8: Visual Representation of Converter. With the provided SMPL model and generated

motions, the converter will automatically convert into FBX and render into animation.

AI-Based Music to Dance Synthesis and Rendering JIN Bohan

5. Result

16

s

We compared our optimized model with the baseline model to see the differences and

improvements in the dance generation results. Firstly, we performed a FID score calculation to

compare the generated results between different models in a quantitative way. The test results of

the base model, other dance generation model, and our optimized model are shown in the table

below:

Table 1. FID Scores Between Different Dance Generation Models

Model Name Motion Quality (FIDk)

Li et al. [19] 86.43

Dancenet [20] 69.18

DanceRevolution [21] 73.42

FACT (Base model) 35.35

FACT-improved (ours) 33.48

Note: The realism and quality of generation can be measured by FID scores. Lower FID scores

represent more realistic motion. The data of our base model and other models are from the paper

of the base model.

As we can see from the table above, our optimized FACT model has the lowest FIDk score. A

lower FID score means the motions we generated have smaller differences compared to the

videos danced by real humans, which means the dance motions generated by our improved

model are the most realistic among the different models we are comparing here. Also, you can

see the differences in the dance poses between the base model and the generated models:

AI-Based Music to Dance Synthesis and Rendering JIN Bohan

Figure 9A: Motion Comparison between the base model (right) and our improved model

17

(left) on the same frame

Figure 9B: Motion Comparison between the base model (left) and our improved model

(right) on the same frame

Figure 9C: Motion Comparison between the base model (right) and our improved model

(left) on the same frame.

AI-Based Music to Dance Synthesis and Rendering JIN Bohan

From the series of comparisons on different keyframes of motions, dance motions generated on

our models have more responses to the beats of the music, and the motions are more diverse,

obvious, and realistic than the dance motions generated by the base model. Dance motion

generated by the base model sometimes tends to be steady, or the amplitude of the dance

movement is insufficient that people might think the model is standing at the same location or

drifting in the air without foot movement, as shown in Figure 9A, but after adding different audio

features into the model, the model started to be more sensitive to the music and the dance

motions have response to any of the beats, and also the poses and transitions are more suitable

for the music clip, as shown in figure 9C. Also, dance motions generated by our model tend to be

more diverse in poses. The motions tend to vary from the initial pose as time goes on, which also

makes the dance motions more realistic, interactive, and interesting, as shown in Figure 9

18

B.

6. Conclusion

Overall, the AI Choreographer, the AI dance generation model, provides people a way to

generate dance motions more easily, and with our enhancement of this model, the AI

Choreographer is even stronger and easier to use. The improvements we brought into this model

include bringing more audio features to the model to analyze and generate more realistic and

detailed dance motions and bringing a usable render that allows for directly generating dance

motion videos, reducing the effort to manually render the generated dance motions. Our provided

dance generation pipeline is such a powerful tool for people that this model is applicable to many

fields and industries, including dance design, game development, films, and television. Our

provided dance generation pipeline can also ignite individuals’ creative processes to create and

enhance their personal art projects and let people get in touch with dance, this important culture,

and art language in an easier and more direct way.

AI-Based Music to Dance Synthesis and Rendering JIN Bohan

 19

Acknowledgments

I would like to express my deep appreciation to everyone who supported me through this project.

I am especially thankful to Dr. Zhou for his invaluable support and guidance during the research.

It’s impossible to finish this project without their encouragement and their insights. Also, I

would like to show my gratefulness to Bancroft School, which provided me with this opportunity

and always supported me until the end of the project.

I would also like to say thank you to the developer of AI Choreographer, Mr. Li, who developed

the base model for our project and made it possible. I would also acknowledge AIST++, which is

the database that provides tons of multi-perspective, real-person dance motion data for us to train

and test the models. Another person I want to acknowledge is Softcat 477 on GitHub, who made

the plugin that allows converting SMPL models to FBX models and allows us to be able to

directly render dance motions onto models and export them to FBX.

Finally, I am deeply grateful to my family and friends for their encouragement, understanding,

and support during my journey in this project. Thank you all for your contributions and support

for this project. Your support and efforts have been invaluable.

AI-Based Music to Dance Synthesis and Rendering JIN Bohan

 20

References

[1] O'shea, Keiron, and Ryan Nash. "An introduction to convolutional neural networks." arXiv

preprint arXiv:1511.08458 (2015).

[2] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet classification with

deep convolutional neural networks." Communications of the ACM 60.6 (2017): 84-90.

[3] Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information

processing systems 30 (2017).

[4] Li, Ruilong, et al. "Ai choreographer: Music conditioned 3d dance generation with aist++."

Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021. (AI Choero)

[5] Ruilong Li*, Shan Yang*, David A. Ross, Angjoo Kanazawa. AI Choreographer: Music

Conditioned 3D Dance Generation with AIST++ ICCV, 2021.

[6] Eisenstein, Jacob. Introduction to natural language processing. MIT press, 2019.

[7] Sarker, Iqbal H. "Deep learning: a comprehensive overview on techniques, taxonomy,

applications and research directions." SN computer science 2.6 (2021): 420.

[8] “Envelope (Music).” Wikipedia, 5 Feb. 2023,

en.wikipedia.org/wiki/Envelope_(music)#:~:text=In%20sound%20and%20music%2C%20an.

[9] “Mel-Frequency Cepstrum.” Wikipedia, 21 Dec. 2019, en.wikipedia.org/wiki/Mel-

frequency_cepstrum.

[10] “Chroma Feature.” Wikipedia, 9 Mar. 2021, en.wikipedia.org/wiki/Chroma_feature.

[11] McFee, Brian et al. “librosa: Audio and Music Signal Analysis in Python.” SciPy (2015).

[12] Tseng, Jonathan, Rodrigo Castellon, and Karen Liu. "Edge: Editable dance generation from

music." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

2023.

[13] Chen, Hanting, et al. "Pre-trained image processing transformer." Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition. 2021.

AI-Based Music to Dance Synthesis and Rendering JIN Bohan

[14] Verma, Prateek, and Chris Chafe. "A generative model for raw audio using transformer

architectures." 2021 24th International Conference on Digital Audio Effects (DAFx). IEEE,

2021.

[15] Loper, Matthew, et al. "SMPL: A skinned multi-person linear model." Seminal Graphics

Papers: Pushing the Boundaries, Volume 2. 2023. 851-866.

[16] Kiran, Uday. “MFCC Technique for Speech Recognition.” Analytics Vidhya, 13 June 2021,

www.analyticsvidhya.com/blog/2021/06/mfcc-technique-for-speech-recognition/.

[17] “Chroma Feature.” Wikipedia, 9 Mar. 2021, en.wikipedia.org/wiki/Chroma_feature.

[18] GeeksforGeeks. “Mel-Frequency Cepstral Coefficients (MFCC) for Speech Recognition.”

GeeksforGeeks, GeeksforGeeks, 26 June 2024, www.geeksforgeeks.org/mel-frequency-cepstral-

coefficients-mfcc-for-speech-recognition/#what-are-mfccs.

[19] Jiaman Li, Yihang Yin, Hang Chu, Yi Zhou, Tingwu Wang, Sanja Fidler, and Hao Li.

Learning to generate diverse dance motions with transformer. arXiv preprint arXiv:2008.08171,

2020.

[20] Wenlin Zhuang, Congyi Wang, Siyu Xia, Jinxiang Chai, and Yangang Wang. Music2dance:

Music-driven dance generation using wavenet. arXiv preprint arXiv:2002.03761, 2020.

[21] Ruozi Huang, Huang Hu, Wei Wu, Kei Sawada, Mi Zhang, and Daxin Jiang. Dance

revolution: Long-term dance generation with music via curriculum learning. In International

Conference on Learning Representations, 2021.

[22] Nair, Pratheeksha. “The Dummy’s Guide to MFCC.” Prathena, 27 July 2018,

medium.com/prathena/the-dummys-guide-to-mfcc-

21

aceab2450fd.

AI-Based Music to Dance Synthesis and Rendering JIN Bohan

Appendixes

22

Appendix A: Source Code of Converter

Convert.py

from scipy.spatial.transform import Rotation as R

mathutils are only available for py3

#from mathutils import Matrix, Vector, Quaternion

from FbxReadWriter import FbxReadWrite

from SmplObject import SmplObjects

import argparse

import tqdm

import sys

sys.path.append('~')

def getArg():

 parser = argparse.ArgumentParser()

 parser.add_argument('--input_pkl_base', type=str, required=True)

 parser.add_argument('--fbx_source_path', type=str, required=True)

 parser.add_argument('--output_base', type=str, required=True)

 return parser.parse_args()

if __name__ == "__main__":

 args = getArg()

 input_pkl_base = args.input_pkl_base

 fbx_source_path = args.fbx_source_path

 output_base = args.output_base

 smplObjects = SmplObjects(input_pkl_base)

 print("start")

 for pkl_name, smpl_params in tqdm.tqdm(smplObjects):

 #try:

 fbxReadWrite = FbxReadWrite(fbx_source_path)

 fbxReadWrite.addAnimation(pkl_name, smpl_params)

 fbxReadWrite.writeFbx(output_base, pkl_name)

 print("done")

AI-Based Music to Dance Synthesis and Rendering JIN Bohan

 23

 #except Exception as e:

 # fbxReadWrite.destroy()

 # print ("- - Distroy")

 # raise e

 #pass

 #finally:

 fbxReadWrite.destroy()

Appendix B: Source code for SMPL Object

This file is essential for the converter to work properly

import numpy as np

import glob

import pickle

import os

from scipy.spatial.transform import Rotation as R

#from mathutils import Matrix, Vector, Quaternion

from typing import Dict

from typing import Tuple

from PathFilter import PathFilter

class SmplObjects(object):

 joints = ["Pelvis"

 ,"L_Hip"

 ,"R_Hip"

 ,"Spine1"

 ,"L_Knee"

 ,"R_Knee"

 ,"Spine2"

 ,"L_Ankle"

 ,"R_Ankle"

 ,"Spine3"

 ,"L_Foot"

 ,"R_Foot"

 ,"Neck"

AI-Based Music to Dance Synthesis and Rendering JIN Bohan

 24

 ,"L_Collar"

 ,"R_Collar"

 ,"Head"

 ,"L_Shoulder"

 ,"R_Shoulder"

 ,"L_Elbow"

 ,"R_Elbow"

 ,"L_Wrist"

 ,"R_Wrist"

 ,"L_Hand"

 ,"R_Hand"]

 def __init__(self, read_path):

 self.files = {}

 # For AIST naming convention

 # paths = PathFilter.filter(read_path,

dance_genres=["gBR"], dance_types=["sBM"], music_IDs=["0"])

 paths = PathFilter.filter(read_path, dance_genres=None,

dance_types=None, music_IDs=None)

 for path in paths:

 filename = path.split("/")[-1]

 # load npy file

 if filename.endswith(".npy"):

 with open(path, 'rb') as f:

 data = np.load(f)

 data = np.array(data) # (N, 225)

 f.close()

 trans = data[:, 6:9]

 poses = data[:, 9:]

 poses = R.from_matrix(poses.reshape(-1, 3,

3)).as_rotvec().reshape(-1, 72)

 self.files[filename] = {"smpl_poses": poses,

 "smpl_trans": trans}

AI-Based Music to Dance Synthesis and Rendering JIN Bohan

 25

 # load pkl file

 else:

 with open(path, "rb") as fp:

 data = pickle.load(fp)

 self.files[filename] = {"smpl_poses":

data["smpl_poses"],

 "smpl_trans":

data["smpl_trans"]}

 self.keys = [key for key in self.files.keys()]

 # def __init__(self, read_path):

 # self.files = {}

 #

 # # For AIST naming convention

 # #paths = PathFilter.filter(read_path,

dance_genres=["gBR"], dance_types=["sBM"], music_IDs=["0"])

 # paths = PathFilter.filter(read_path,

dance_genres=None, dance_types=None, music_IDs=None)

 # for path in paths:

 # filename = path.split("/")[-1]

 # with open(path, "rb") as fp:

 # data = pickle.load(fp)

 # self.files[filename] = {"smpl_poses":data["smpl_poses"],

 # "smpl_trans":data["smpl_trans"]

/ (data["smpl_scaling"][0]*100)}

 # self.keys = [key for key in self.files.keys()]

 def __len__(self):

 return len(self.keys)

 def __getitem__(self, idx:int) -> Tuple[str, Dict]:

 key = self.keys[idx]

 return key, self.files[key]

