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Bancroft School 

 

Abstract. AI Choreographer is a deep learning model that is able to generate dance motions 

according to music easily. However, several difficulties and weaknesses in the model still make 

it difficult to use. For example, the model generates realistic motions, but sometimes the motions 

are repetitive or do not respond to the audio correctly. Also, the model does not have a usable 

render that allows it to directly animate the provided models with generated data. We improved 

our base model to generate more realistic and better dance motions, and we also created a usable 

automated render pipeline to directly render the generated motions into an animation of the 

human models provided by the user. We improved the generation quality by introducing more 

audio features into the model so that the models can utilize more features for better results. Also, 

we overcame different difficulties in the rendering process, including applying the AI-generated 

numpy motion data to provided SMPL models and converting the animated SMPL models into 

usable FBX models. In general, the improved model generates motions that are more diverse and 

realistic than the base model, which provides dance motions that have higher quality. 

Keywords: Dance Generation, Motion Rendering, Deep Learning, Artificial Intelligence for Art, 

Artificial Intelligence Generated Content (AIGC)
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1. Introduction 

Dance has already become a prevalent culture worldwide, as many people use it to express and 

share their ideas. However, dance is still a skill for people, and we must put much time and effort 

into practicing it to perform well. Fortunately, dance can also be treated as a language, and 

people can try to use AI models to help with dance motion generation, just like how AI models 

treat natural languages. That’s why some dance generation models, like AI Choreographer, 

appeared. Those models could use a piece of music as an input and automatically generate the 

dance motions according to the music. 

Unfortunately, AI Choreographer still has weaknesses that make it difficult for people to use. 

The AI Choreographer did not provide an official render to use the generated data to generate an 

animated model that could directly be used in many industries. For improvement, we added a 

usable render that can directly render the generated motion onto a user provided model, and 

output a ready-to-use FBX model. This generated FBX model can directly be used by most of 

the popular 3D rendering software and game engines. 

Moreover, the AI Choreographer uses audio features, which are the identity that could describe 

audio, as tokens to compose the audio transformers. However, the amount of audio features used 

in this model is not sufficient to capture the rich audio information in the music clip. After our 

investigation, we classified all audio features into two main categories: Spectral Features and 

Rhythm features. With the two main categories of features captured, the model generates dance 

motions that better match the beats and rhythms of the input music.  

2. Related Works 

2.1 3D Human Motion Generation 

Although human motion generation is still challenging in robotics, computer vision, and 

graphics, this topic is already well-studied, and there are some well-developed solutions to help 

deal with human motion generation. With the development of deep learning, people can use deep 

neural networks to build and train models to generate diverse motions, such as the CNN neural 

network [1,2] or the Transformer model [3]. AI Choreographer [4] is a music-conditioned 3D 

dance generation model with the help of a new dancing motion dataset: AIST++ [5]. This model 
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allows the generation of dance motions according to different music using Transformer models 

to study, analyze, and generate different dance motions by extracting and utilizing the features 

from music and building relationships between different audio features and poses. EDGE 

(Editable Dance Generation) is another dance generation model built with a transformer-based 

diffusion model with a powerful music features extractor. This model also allows for generating 

“realistic and physically plausible dances.” [12].  

2.2 The Transformer Models 

Dance motion generation is similar to natural language processing [6]; different motions are 

connected in a particular sequence. The Transformer Model is an excellent way to train and 

generate dance motions, like natural language analysis and generation. The Transformer Model 

is a deep learning [7] model that uses attention to calculate the relationship between tokens from 

the given model. When generating, the Transformer Model will always use its arguments trained 

from datasets to make predictions on what mostly will the next token be. This process allows 

computers to do natural language analysis and processing or, more extended, work on image 

[13], audio [14], or dance motion generation [4, 12]. The Transformer Model here will receive an 

audio clip and generate dance motions according to the audio clip given. The model will output 

matrixes to indicate joint positions and rotation in a 3D space, which could used in either video 

rendering or robot motions. 

2.3 Audio Features Extraction 

Music will hugely affect the dance's motion. Hence, it is also very important to use the features 

of music to help with the model training process. By identifying features such as envelope [8], 

MFCC [9], and Chroma [10], we can tell the models what type of music they are and what their 

rhythms are, which will help classify and produce more precise arguments while going through 

the attention mechanism in the model. Librosa [11] is a Python library that helps with audio 

feature extraction, which allows us to utilize different audio features to improve model 

generation quality. 
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3. Backgrounds 

3.1 The Transformer Model 

The main building block for this model is the so-called Scaled-dot-Product Attention [3]. The 

Scaled-dot Product Attention function can calculate vectors Q (Query), K (Key), and V (Value) 

simultaneously and calculate the weights of the values, which represent the relationships of the 

values. The dot product of vector Q with all keys is performed, and the dot product is divided by 

the square root of the vector’s dimension 𝑑𝑘, and the SoftMax of the product is calculated. 

Finally, the SoftMax value will perform another multiplication with vector V and calculate the 

values' weights. Here is the general formula for the Scaled Dot-Product Attention function: 

Attention(𝑄,𝐾,𝑉)=softmax (
𝑄𝐾𝑇

√𝑑𝑘

)𝑉 (1) 

Figure 1 also explains this formula visually: 

 

Figure 1: The visual model of Scaled Dot-Product Attention [3].  

Multiple Scaled Dot-Product Attentions get together and formed Multi-Head Attentions, which is 

the most important building block of a transformer model, which we will explain later. The 

Multi-head Attention gets Query, Key, and Value vectors and perform a linear transformation for 

each of those. The multi-head attention will apply the Q, K and V vectors into each layer of 
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scaled dot-product attention, and finally concatenate all results and perform another linear 

transformation, which is represented in the graph below: 

 

Figure 2: The Visual Model of Multi-Head Attention [3] 

For the transformer model, just like other neural transduction models, has an encoder and 

decoder. During the encoding process, the model will map the series of input into a continuous 

representation, and the decoder will use the generated continuous representations to generate the 

output sequence. For each sublayer of the encoder, it contains a multi-head attention and a 

simple and fully connected feed-forward network. The structure of the sublayer of the decoder is 

similar but the decoder contains an extra masked multi-head attention. A transformer model 

contains the same number of encoder layers and decoder layers, and usually the number of layers 

is 6. Figure 3 below shows the visualization of the transformer models: 



AI-Based Music to Dance Synthesis and Rendering JIN Bohan 

 

 8 

 

Figure 3: The Visual Model of the Transformer Model [3] 

3.2 Skinned Multi-Person Linear Model (SMPL) 

SMPL [15] is the main model used in this project to visualize generated motions, which are 

represented by the rotation angles of all joints. Here are two formulas that are essential in the 

process of calculation. The first formula is used to calculate the transformation matrix of joints 

according to a vector of turning angles related to a particular part of the model, which uses the 

Rodrigues formula to convert the vectors into rotation matrixes as follows: 

exp(𝜔⃗⃗ 𝑗) = 𝐼 + 𝜔̂̅𝑗 sin(∥ 𝜔⃗⃗ 𝑗 ∥) + 𝜔̂̅𝑗
2
cos(∥ 𝜔⃗⃗ 𝑗 ∥) (2) 

Where  𝜔⃗⃗ 𝑗 represents the relative rotation angle of a joint related to its parents in the kinematic 

tree and 𝐼 represents the 3x3 identity matrix. 
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In order to calculate the world positions of the joints during the transformation, we also need to 

calculate the transformation of each joint relative to their T-pose positions with the formula as 

follows: 

𝐺𝑘
′ (θ⃗ , 𝐽) = 𝐺𝑘(θ⃗ , 𝐽)𝐺𝑘(θ∗⃗⃗  ⃗, 𝐽)

−1
(3) 

Where the T-pose of the model is represented by 𝜃∗⃗⃗⃗⃗  in the formula and 𝜃  represents the rotations 

of joints in that frame 𝑘, and 𝑱 represents the matrix contains the transformation information of 

each joint of the model. With the help of formula 2 and formula 3, the absolute positions and 

rotations of each joint in the model can be easily calculated. Please refer to the paper of SMPL 

model for the absolute positions’ calculation formula [15]. 

Also, different individuals have different body shapes. For example, some people are taller than 

others or some people have larger stomachs than others. SMPL models have the compatibility to 

express different body shapes with the following formula: 

𝐵𝑆(c; 𝑆) = ∑ β𝑛𝑆𝑛

|β⃗⃗ |

𝑛=1

(4) 

Where the 𝛽  represents the linear shape coefficient, and 𝑆𝑛 represents the orthonormal principal 

components of shape displacements, which are the simplified and standardized data from the 

original shape displacements [15]. With this formula, SMPL model is compatible with 

expressing a variety types of body shapes. 

Because of the different body shapes, the joint locations are also different from each other, and it 

is very important to automatically adjust the joint locations in different body shapes. Otherwise, 

there would be rendering issue while SMPL is trying to do the skinning for the skeleton. Hence 

the formula below will automatically calculate different joint locations: 

𝐽(β⃗ ;𝒥, 𝑇,𝑆) = 𝒥 (𝑇 + 𝐵𝑆(β⃗ ; 𝑆)) (5) 

Where 𝑻 represents the template location matrix and 𝒥 represents the matrix that transforms rest 

vertices into rest joints [15]. The matrix 𝒥 contains example poses from many different people 

with variety types of poses so that it will make sure that the SMPL model is compatible with all 
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types of body shapes with different joint locations and with different poses. The formulas above 
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are some of the most essential formulas that make sure the model will render and work properly. 

3.3 Music Features 

Music features are also very important information while generating dance poses, especially in 

this project; we used more music features to optimize the training and generation results. Music 

features are the characteristics of music, which use data to represent those characteristics and 

help with the music classification while training and generating the dance poses. According to 

the APIs Librosa [11] provides, we classified all the extractable music features into two major 

types: Spectral Features and Rhythm features. Spectral Features, for example, the chroma and 

MFCC of a piece of music, are the features that can be represented with a graph. Rhythm 

features, like the tempo of music, are the features that are more related to the rhythm and beats of 

the music. Using those features while training, the music can be classified into a more detailed 

genre so that the model can generate more appropriate dances with the detailed classifications.  

4. Methods 

4.1 Music Features Extraction 

We used the publicly available audio processing toolbox Librosa [11] to extract music features 

and optimize training results. We extract the envelope of a music clip to see the changes in 

amplitude and frequency over time. We also extract the MFCCs (Mel Frequency Cepstral 

Coefficients) [9] and chroma [10] of the music clip to extract the music's characteristics and 

melodic features, which the graphs of MFCC and the chroma extracted by Librosa are shown and 

explained as below:  

 

Figure 4: The MFCC feature of An Audio Represented in Graph [16, 22] 
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The MFCC can be calculated with the following 

11

process [18]: 

1. Pre-Processing: First amplifying higher frequencies, then divide the signal into small, 

overlapping frames, and finally apply a Hamming Window to soften edges of each frame. 

2. Fast Fourier Transformer (FFT): Convert the time domain signal to the frequency 

domain. 

3. Mel-filterbank: Separate into different frequency bands and emphasize important 

frequencies. 

4. Logarithm: Take the logarithm of output from the Mel-filterbank, which compresses the 

dynamic range of audio and more closely matches human sound intensity. 

5. Discrete Cosine Transform (DCT): Highlights the most significant features of the sound 

in each frame, which effectively captures the characteristics of a sound. 

 

 

Figure 5: The Chroma Feature of an Audio Represented by Graph [17], where the X-axis 

represents the time and the Y-axis represents the different chroma of audio. 

The basic formula that calculates the chroma of audio is represented as below: 

𝑐ℎ𝑟𝑜𝑚𝑎[𝑘, 𝑡] = ∑ 𝑆[𝑚, 𝑡]
𝑚∈𝐹(𝑘)

(6) 

Where 𝑘 represents the pitch class at time frame 𝑘, 𝑆[𝑚, 𝑡] represents the value of power 

spectrogram value at frequency bin 𝑚 and time frame 𝑡, and 𝐹(𝑘) represents the frequency bins 

of the particular audio.  

One-hot peaks and one-bot beats are also used to extract the pattern of rhythms. The tempo of the 

music is also extracted, which is also a rhythmic feature to see the speed of the music. The zero-
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crossing rate is also used in optimization and can recognize any part with no volume. The 

Spectral Centroid and Spectral Bandwidth features are also used in optimization, which indicates 

the frequency of energy a clip of music concentrates and shows how wide the energy spreads. 

All of these features above, which represent the melodic, rhythmic features, and characteristics 

of a music clip, help optimize the training result by having more features for the models to 
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classify different types of music.  
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4.2 Dance Poses Generation 

 

Figure 6: The main processes of Dance Poses Generation. Rotation angles and extracted audio 

features are input into the model to generate new dance motions, and the generated dance motion 

in the form of NPY file will be fed into the automated rendering pipeline for model rendering. 

The automated rendering pipeline will apply the generated motion onto an FBX model and 

render inside Blender. 
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The figure above shows the dance pose generation processes, including the rendering part, which 

has not been officially released by the developer of the AI Choreographer. First, the audio 

extractor will extract the essential audio features from the audio file provided and send the 

extracted features to the AI Choreographer. The model includes two transformers: the audio 

transformer, which will help with processing the audio features given from the extractor, and the 

motion transformer, which will process the dance motions according to the rotation angles from 

the previous frames. With the combination of the two, the model will come up with a cross-

model transformer to generate the dance motion in the future frames, which will finally output as 
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a numpy file.  

4.3 3D Animation Rendering 

The rendering part will start with the numpy file generated by the AI Choreographer by applying 

the turning angles into the prepared FBX model converted from the SMPL model, and the 

converter will output an animated FBX model. The animated FBX model can directly imported 

into any popular 3D modeling or rendering software, which we are using Blender here, to see the 

result. 

One of the improvements we made here is providing a usable dance pose renderer using the 

numpy array results generated by the model. Based on the source code of Blender Plugin – 

SMPL-to-FBX 1– we created a new plugin that takes the numpy file generated by the model and 

any SMPL model. The plugin will automatically apply the numpy file to the SMPL file as 

animation and convert the animated SMPL file into FBX. The animation application will follow 

the joint map below for conversion: 

 
1 https://github.com/softcat477/SMPL-to-FBX 

 

https://github.com/softcat477/SMPL-to-FBX
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Figure 7: Joints used by the converter to 
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incorporate the generated motions into FBX 

models. The corresponding joint and the numbering are listed on the left, and the positions of 

each joint are presented on the right. 

The whole converting process can be visualized as below: 

 

Figure 8: Visual Representation of Converter. With the provided SMPL model and generated 

motions, the converter will automatically convert into FBX and render into animation. 
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5. Result
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s 

We compared our optimized model with the baseline model to see the differences and 

improvements in the dance generation results. Firstly, we performed a FID score calculation to 

compare the generated results between different models in a quantitative way. The test results of 

the base model, other dance generation model, and our optimized model are shown in the table 

below: 

 

Table 1. FID Scores Between Different Dance Generation Models 

Model Name Motion Quality (FIDk) 

Li et al. [19] 86.43 

Dancenet [20] 69.18 

DanceRevolution [21] 73.42 

FACT (Base model) 35.35 

FACT-improved (ours) 33.48 

 

Note: The realism and quality of generation can be measured by FID scores. Lower FID scores 

represent more realistic motion. The data of our base model and other models are from the paper 

of the base model. 

 

As we can see from the table above, our optimized FACT model has the lowest FIDk score. A 

lower FID score means the motions we generated have smaller differences compared to the 

videos danced by real humans, which means the dance motions generated by our improved 

model are the most realistic among the different models we are comparing here. Also, you can 

see the differences in the dance poses between the base model and the generated models: 
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Figure 9A: Motion Comparison between the base model (right) and our improved model 
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(left) on the same frame 

 

Figure 9B: Motion Comparison between the base model (left) and our improved model 

(right) on the same frame 

 

Figure 9C: Motion Comparison between the base model (right) and our improved model 

(left) on the same frame. 
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From the series of comparisons on different keyframes of motions, dance motions generated on 

our models have more responses to the beats of the music, and the motions are more diverse, 

obvious, and realistic than the dance motions generated by the base model. Dance motion 

generated by the base model sometimes tends to be steady, or the amplitude of the dance 

movement is insufficient that people might think the model is standing at the same location or 

drifting in the air without foot movement, as shown in Figure 9A, but after adding different audio 

features into the model, the model started to be more sensitive to the music and the dance 

motions have response to any of the beats, and also the poses and transitions are more suitable 

for the music clip, as shown in figure 9C. Also, dance motions generated by our model tend to be 

more diverse in poses. The motions tend to vary from the initial pose as time goes on, which also 

makes the dance motions more realistic, interactive, and interesting, as shown in Figure 9

18

B. 

6. Conclusion 

Overall, the AI Choreographer, the AI dance generation model, provides people a way to 

generate dance motions more easily, and with our enhancement of this model, the AI 

Choreographer is even stronger and easier to use. The improvements we brought into this model 

include bringing more audio features to the model to analyze and generate more realistic and 

detailed dance motions and bringing a usable render that allows for directly generating dance 

motion videos, reducing the effort to manually render the generated dance motions. Our provided 

dance generation pipeline is such a powerful tool for people that this model is applicable to many 

fields and industries, including dance design, game development, films, and television. Our 

provided dance generation pipeline can also ignite individuals’ creative processes to create and 

enhance their personal art projects and let people get in touch with dance, this important culture, 

and art language in an easier and more direct way. 
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Appendix A: Source Code of Converter 

 

Convert.py 

from scipy.spatial.transform import Rotation as R 

# mathutils are only available for py3 

#from mathutils import Matrix, Vector, Quaternion 

from FbxReadWriter import FbxReadWrite 

from SmplObject import SmplObjects 

import argparse 

import tqdm 

import sys 

sys.path.append('~') 

 

def getArg(): 

    parser = argparse.ArgumentParser() 

    parser.add_argument('--input_pkl_base', type=str, required=True) 

    parser.add_argument('--fbx_source_path', type=str, required=True) 

    parser.add_argument('--output_base', type=str, required=True) 

 

    return parser.parse_args() 

 

if __name__ == "__main__": 

    args = getArg() 

    input_pkl_base = args.input_pkl_base 

    fbx_source_path = args.fbx_source_path 

    output_base = args.output_base 

 

    smplObjects = SmplObjects(input_pkl_base) 

    print("start") 

    for pkl_name, smpl_params in tqdm.tqdm(smplObjects): 

         

        #try: 

        fbxReadWrite = FbxReadWrite(fbx_source_path) 

        fbxReadWrite.addAnimation(pkl_name, smpl_params) 

        fbxReadWrite.writeFbx(output_base, pkl_name) 

        print("done") 
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        #except Exception as e: 

        #    fbxReadWrite.destroy() 

        #    print ("- - Distroy") 

        #    raise e 

            #pass 

        #finally: 

        fbxReadWrite.destroy() 
  

Appendix B: Source code for SMPL Object 

This file is essential for the converter to work properly 

import numpy as np 

import glob 

import pickle 

import os 

from scipy.spatial.transform import Rotation as R 

#from mathutils import Matrix, Vector, Quaternion 

from typing import Dict 

from typing import Tuple 

 

from PathFilter import PathFilter 

 

class SmplObjects(object): 

    joints = ["Pelvis" 

    ,"L_Hip" 

    ,"R_Hip" 

    ,"Spine1" 

 

    ,"L_Knee" 

    ,"R_Knee" 

    ,"Spine2" 

 

    ,"L_Ankle" 

    ,"R_Ankle" 

    ,"Spine3" 

 

    ,"L_Foot" 

    ,"R_Foot" 

    ,"Neck" 
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    ,"L_Collar" 

    ,"R_Collar" 

 

    ,"Head" 

    ,"L_Shoulder" 

    ,"R_Shoulder" 

 

    ,"L_Elbow" 

    ,"R_Elbow" 

    ,"L_Wrist" 

    ,"R_Wrist" 

    ,"L_Hand" 

    ,"R_Hand"] 

 

    def __init__(self, read_path): 

        self.files = {} 

 

        # For AIST naming convention 

        # paths = PathFilter.filter(read_path, 

dance_genres=["gBR"],  dance_types=["sBM"], music_IDs=["0"]) 

        paths = PathFilter.filter(read_path, dance_genres=None, 

dance_types=None, music_IDs=None) 

        for path in paths: 

            filename = path.split("/")[-1] 

 

            # load npy file 

            if filename.endswith(".npy"): 

                with open(path, 'rb') as f: 

                    data = np.load(f) 

                    data = np.array(data)  # (N, 225) 

                    f.close() 

                trans = data[:, 6:9] 

                poses = data[:, 9:] 

                poses = R.from_matrix(poses.reshape(-1, 3, 

3)).as_rotvec().reshape(-1, 72) 

 

                self.files[filename] = {"smpl_poses": poses, 

                                        "smpl_trans": trans} 
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            # load pkl file 

            else: 

                with open(path, "rb") as fp: 

                    data = pickle.load(fp) 

                self.files[filename] = {"smpl_poses": 

data["smpl_poses"], 

                                        "smpl_trans": 

data["smpl_trans"]} 

 

        self.keys = [key for key in self.files.keys()] 

    # def __init__(self, read_path): 

    #     self.files = {} 

    # 

    #     # For AIST naming convention 

    #     #paths = PathFilter.filter(read_path, 

dance_genres=["gBR"],  dance_types=["sBM"], music_IDs=["0"]) 

    #     paths = PathFilter.filter(read_path, 

dance_genres=None,  dance_types=None, music_IDs=None) 

    #     for path in paths: 

    #         filename = path.split("/")[-1] 

    #         with open(path, "rb") as fp: 

    #             data = pickle.load(fp) 

    #         self.files[filename] = {"smpl_poses":data["smpl_poses"], 

    #                                 "smpl_trans":data["smpl_trans"] 

/ (data["smpl_scaling"][0]*100)} 

    #     self.keys = [key for key in self.files.keys()] 

 

    def __len__(self): 

        return len(self.keys) 

 

    def __getitem__(self, idx:int) -> Tuple[str, Dict]: 

        key = self.keys[idx] 

        return key, self.files[key] 

 
 


